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1. Introduction

What happens to government revenue when the tax on a good is changed?  And what tax

rate maximizes government revenue?  To answer these questions one needs to know the form of the

demand and supply curves for the good.  In this methodological note we set out a procedure for

estimating demand curves.

For the main commodities subject to excise - notably petroleum products, alcoholic

beverages and tobacco products - it is conventional (and usually reasonable) to assume that supply

is infinitely elastic, particularly when annual data are being used.  This gives the horizontal supply

curve as shown by Qs in Figure 1.  When taxes are added, this gives the tax-inclusive supply curve

Qs+T.  From year to year the cost of supplying the goods, and/or the tax rate, varies.  This moves

the tax-inclusive supply curve up and down, tracing out equilibrium points (such as A) along the

demand curve.  Thus every price and quantity combination which is observed, in each year, must

be on the demand curve.  The essential idea behind estimating a demand curve is to put numbers on

this relationship between price and quantity.

The next section lays out the main methods for estimating demand curves, with the help of

a relevant example.  For the excise study it would be worth following the first 8 steps outlined in

this section.  The methodological section is followed by a brief and highly selective summary of the

main estimation issues and results for tobacco and alcohol demand.
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2. The Practical Estimation of Demand Curves

In this section we summarize the main approaches to estimating demand curves.  To

illustrate the techniques, we apply them to data on the consumption of regular gasoline (“essence

tourisme”) in Madagascar during the period 1978-1996.   The data are reproduced in Appendix 1.

The output included in the text was produced using LIMDEP version 7.0, but the estimates could

equally well have been done with another software package (e.g. SAS, SPSS, TSP, RATS,

Microfit, STATA).

Step 1. Choosing the variables

The first step is to determine what variables are to be included in the analysis.  The choice

is based both on theory and on practical availability.

The dependent variable in looking at gasoline demand is typically taken to be the amount

of gasoline used per capita but some authors prefer to use gasoline used per driver or per vehicle

mile driven.  In the Madagascar case the lack of good information on the number of drivers or

vehicle miles driven rules out the latter two possibilities, so one is obliged to use gasoline

consumption per capita.  Consumption should be measured as the volume (e.g. liters, tonnes)

bought by consumers (including businesses who need gasoline) during the time period in question.

Theory suggests that the independent variables should include:

a. The price of gasoline.  This should be deflated, for instance by the consumer price index,

to give the real price of gasoline;  one may think of the real price of gasoline as the price of

gasoline relative to the price of all other goods and services.  We expect a higher price of gasoline

to be associated with a lower quantity of gasoline demanded;  this is the demand relationship of

primary interest.
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b. The price of substitutes and complements.  The most important substitute for gasoline is

diesel fuel.  If the real price of diesel fuel rises we expect the quantity of gasoline demanded to rise,

as consumers substitute away from diesel fuel.  Cars and light trucks and buses, which run on

gasoline, are complementary goods, and in principle the price of these vehicles should be included,

the idea being that if cars are more expensive then fewer will be bought and the demand for

gasoline will be lower (other things being equal).  In practice it is extremely difficult to generate a

good price series for cars, mainly because the quality of cars changes significantly over time and so

it is difficult to obtain the price of a “standardized” car.

c. Income.  With higher incomes, more individuals and businesses can afford to run vehicles,

and so the demand for gasoline will be higher.  If the dependent variable is gasoline consumption

per capita, then income needs to be expressed in per capita terms too.  The most commonly-used

variable is real GDP/capita, but one could make a case for using real consumption expenditure per

capita or real disposable income per capita instead, if these are available.

Step 2. Build the data set.

This is often the longest and most tedious step.  Except with large data sets, it is generally

helpful to organize the data on a spreadsheet (such as Excel or Lotus123), and even to use the

spreadsheet to do some initial transformations of the data (e.g. converting GDP into real GDP in,

say, 1996 prices).

Step 3.  Exploratory data analysis.

It is usually worth getting summary statistics (mean, standard deviation, minimum,

maximum) for the variables to be used, and even to graph them.  For instance:

================================================================================
º  LIMDEP Estimation Results                       Run log line   51  Page  23 º
º  Sample was reset:  SAMPLE   ALL                                             º
º  Current sample contains      19 observations.                               º
===============================================================================¼

                             Descriptive Statistics
Variable   Mean      Std. Dev.   Skew. Kurt.  Minimum     Maximum      Cases
____________________________________________________________________________
QREGCAP    8065.3864   2161.5976   1.4   3.6   5870.1479  13569.5391      19
RPREG1        7.2377      1.1445   0.1   2.4      5.3078      9.6510      19
RPDIE1        3.9178      0.3433   0.2   2.2      3.3037      4.6221      19
RGDPCAP    1356.3608    149.2982   1.5   3.8   1217.7950   1724.6815      19

The variables here are
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QREGCAP: volume of gasoline consumption per capita (kg p.a.)
RPREG1: price at the pump of regular gasoline in FMG per liter in 1990 prices.
RPDIE1: price at the pump of diesel gasoline in FMG per liter in 1990 prices.
RGDPCAP: real GDP per capita, in ‘000 of FMG in 1990 prices.

Step 4.  Basic OLS estimations

It is a good idea to begin with the simplest type of regression, which is ordinary least

squares (OLS).  Here is the result of such an estimation:
================================================================================
º  LIMDEP Estimation Results                       Run log line   20  Page   1 º
º  Sample was reset:  SAMPLE   ALL                                             º
º  Current sample contains      19 observations.                               º
===============================================================================¼

=========================================================================
º Ordinary    least squares regression    Weighting variable = ONE      º
º Dependent variable is QREGCAP   Mean = 8065.38638, S.D. =   2161.5976 º
º Model size: Observations =      19, Parameters =   4, Deg.Fr. =    15 º
º Residuals:  Sum of squares=   0.190725E+08 Std.Dev. =      1127.60673 º
º Fit:        R-squared = 0.77323, Adjusted R-squared =         0.72788 º
º Model test: F[  3,     15] =   17.05,    Prob value =         0.00004 º
º Diagnostic: Log-L =   -158.2433, Restricted(á=0) Log-L =    -172.3396 º
º             Amemiya Pr. Crt.=*********, Akaike Info. Crt.=     17.078 º
º Autocorrel: Durbin-Watson Statistic =   1.28739,   Rho =      0.35631 º
========================================================================¼
  Variable  Coefficient   Standard Error  t-ratio  P[|T|>=t]   Mean of X
  _____________________________________________________________________

Constant    -12732.          4218.9       -3.018   0.00865    n.a.
  RPREG1     -81.910          241.43       -0.339   0.73911   7.238
  RPDIE1      981.71          806.79        1.217   0.24248   3.918
  RGDPCAP     12.935          1.8203        7.106   0.00000   1356.

The fit is relatively good, with an adjusted R2 of 0.73.  The coefficients have the expected signs,

although the price variables are not statistically significant.  The relatively low Durbin-Watson

statistic indicates the presence of autocorrelation, which will need to be addressed.  One

commonly-used fix is to add a time trend, which gives the following:

=========================================================================
º Ordinary    least squares regression    Weighting variable = ONE      º
º Dependent variable is QREGCAP   Mean = 8065.38638, S.D. =   2161.5976 º
º Model size: Observations =      19, Parameters =   5, Deg.Fr. =    14 º
º Residuals:  Sum of squares=   0.637309E+07 Std.Dev. =       674.70054 º
º Fit:        R-squared = 0.92422, Adjusted R-squared =         0.90257 º
º Model test: F[  4,     14] =   42.69,    Prob value =         0.00000 º
º Diagnostic: Log-L =   -147.8298, Restricted(á=0) Log-L =    -172.3396 º
º             Amemiya Pr. Crt.=*********, Akaike Info. Crt.=     16.087 º
º Autocorrel: Durbin-Watson Statistic =   2.43274,   Rho =     -0.21637 º
========================================================================¼
  Variable  Coefficient   Standard Error  t-ratio  P[|T|>=t]   Mean of X
  _____________________________________________________________________
  Constant   0.80144E+06     0.15417E+06    5.198   0.00013    n.a.
  RPREG1     -1193.4          255.24       -4.675   0.00036   7.238
  RPDIE1      2300.5          543.49        4.233   0.00084   3.918
  RGDPCAP     3.0062          2.1726        1.384   0.18811   1356.
  YEAR       -401.52          76.021       -5.282   0.00012   1987.

The results are not entirely convincing.  It is unusual to find a negative time trend in this context.

What is probably occurring is that the time trend is picking up some of the effect that should

rightfully be attributed to the fall, over time, in real GDP per capita.  The clearest evidence of this

is the substantial drop in the coefficient on real per capita GDP (RGDPCAP) when the time trend

is added to the regression.
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Step 5a:  Explore functional form

Theory gives very little guidance as to the appropriate functional form for the regression,

yet the choice is important when using the econometric results to estimate the effect of changes in

the tax rate on the revenue yielded by the tax (see Haughton 1998).  While the linear form shown

above is sometimes estimated, it is far more common to estimate demand equations in log form -

partly because the results are easier to interpret.  Such an estimation gives the following result:

================================================================================
º  LIMDEP Estimation Results                       Run log line   22  Page   3 º
º  Current sample contains      19 observations.                               º
===============================================================================¼

=========================================================================
º Ordinary    least squares regression    Weighting variable = ONE      º
º Dependent variable is LQREGCAP  Mean =    8.96655, S.D. =      0.2367 º
º Model size: Observations =      19, Parameters =   4, Deg.Fr. =    15 º
º Residuals:  Sum of squares=   0.271745     Std.Dev. =         0.13460 º
º Fit:        R-squared = 0.73054, Adjusted R-squared =         0.67665 º
º Model test: F[  3,     15] =   13.56,    Prob value =         0.00015 º
º Diagnostic: Log-L =     13.3898, Restricted(á=0) Log-L =       0.9322 º
º             Amemiya Pr. Crt.=    0.022, Akaike Info. Crt.=     -0.988 º
º Autocorrel: Durbin-Watson Statistic =   0.92721,   Rho =      0.53640 º
========================================================================¼
  Variable  Coefficient   Standard Error  t-ratio  P[|T|>=t]   Mean of X
  _____________________________________________________________________
  Constant   -5.9462          2.3763       -2.502   0.02439    n.a.
  LRPREG1   -0.99093E-01     0.20475       -0.484   0.63540   1.967
  LRPDIE1    0.42781         0.37329        1.146   0.26974   1.362
  LRGDPCAP    2.0153         0.31869        6.324   0.00001   7.207

The coefficients here may be interpreted as elasticities.  Thus we have the following:

• the own-price elasticity of demand for regular gasoline is -0.099, which is plausible.  However

it is not statistically significantly different from zero (the p-value is a high 0.645).  This is not

a reason for ignoring the estimate, but it does indicate that the elasticity has not been estimated

with much precision.

• The cross-price elasticity of demand for regular gasoline, with respect to the price of diesel

fuel, is 0.43.  This is plausible, although somewhat higher than one might expect; it too is not

statistically significant.

• The income elasticity of demand for regular gasoline is 2.02 and statistically significant.  This

is high, but plausible.

However this is not yet a satisfactory regression, because the low Durbin-Watson Statistic

indicates that there is significant autocorrelation.  Adding a time trend (results not shown here)

removes the autocorrelation, but radically alters some of the coefficients - for instance cutting the

income elasticity down to 0.32.

Step 5b:  Explore functional form: Box-Cox
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One can try to determine whether a linear, or log, or other functional form is appropriate

by first transforming the variables using the Box-Cox transformation.  This transformation (on

variable q) is given by

q(λ) = (qλ-1)/λ if λ≠0

= log(q) if λ=0.

In order to transform the variables one needs to estimate λ, which is not yet known.  One can

search over a grid for the value of λ which maximizes the likelihood of the function, or one can

apply an optimization program to find the value of λ which maximizes the likelihood function;  a

good statistical package will do this in response to a few relatively simple commands.  The results

of applying maximum likelihood estimation to the Box-Cox transformed model are as follows:
================================================================================
º  LIMDEP Estimation Results                       Run log line   55  Page  26 º
º  Current sample contains      19 observations.                               º
===============================================================================¼

=========================================================================
º Box-Cox Regression -- OLS Starting Values                             º
º Ordinary    least squares regression    Weighting variable = ONE      º
º Dependent variable is QREGCAPN  Mean =    8.06539, S.D. =      2.1616 º
º Model size: Observations =      19, Parameters =   4, Deg.Fr. =    15 º
º Residuals:  Sum of squares=    19.0725     Std.Dev. =         1.12761 º
º Fit:        R-squared = 1.27150, Adjusted R-squared =         1.32580 º
º Diagnostic: Log-L =    -26.9960, Restricted(á=0) Log-L =     -41.0923 º
º             Amemiya Pr. Crt.=    1.539, Akaike Info. Crt.=      3.263 º
========================================================================¼
  Variable  Coefficient   Standard Error  z=b/s.e. P[|T|>=t]   Mean of X
  _____________________________________________________________________
  RPREG1    -0.81910E-01     0.24143       -0.339   0.73441   7.238
  RPDIE1     0.98171         0.80679        1.217   0.22368   3.918
  RGDPCAPN    12.935          1.8203        7.106   0.00000   1.356
  Constant   -12.732          4.2189       -3.018   0.00255    n.a.

================================================================================
º  LIMDEP Estimation Results                       Run log line   55  Page  27 º
º  Current sample contains      19 observations.                               º
===============================================================================¼

=========================================================================
º Box-Cox Nonlinear Regression Model                                    º
º Maximum likelihood estimator       Heteroscedasticity:W(i) = ONE      º
º Dependent variable is QREGCAPN  Mean =    8.06539, S.D. =      2.1616 º
º Model size: Observations =      19, Parameters =   4, Deg.Fr. =    15 º
º Residuals:  Sum of squares=   0.634081E-01 Std.Dev. =         0.05777 º
º Fit:        R-squared = 0.99929, Adjusted R-squared =         0.99932 º
º             Note:  Not using OLS.  R-squared is not bounded in [0,1]  º
º Model test: F[  3,     15] = 6995.49,    Prob value =         0.00000 º
º Diagnostic: Log-L =     27.2149, Restricted(á=0) Log-L =     -41.0923 º
º             Amemiya Pr. Crt.=    0.004, Akaike Info. Crt.=     -2.444 º
º Transformations: RHS = Lambda  , LHS = Lambda                         º
º Elasticities have been kept in matrix EPSILON                         º
º Log-likelihood accounting for the LHS transformation   =    -25.64911 º
========================================================================¼
  Variable  Coefficient   Standard Error  z=b/s.e. P[|T|>=t]   Mean of X
  _____________________________________________________________________
  RPREG1    -0.10601         0.17514       -0.605   0.54498   7.238
  RPDIE1     0.31647         0.35926        0.881   0.37838   3.918
  RGDPCAPN    1.0550          1.7776        0.593   0.55286   1.356
  Constant   0.97066         0.45167        2.149   0.03163    n.a.
  Lambda    -0.35143         0.91363       -0.385   0.70050    n.a.
 sigma sq   0.33373E-02     0.12601E-01    0.265   0.79114    n.a.

The estimated value of λ is -0.35, and is not statistically different from zero.  This suggests that the

log-log model (which implicitly assumes λ=0) is better than the linear model (which assumes λ=1);

this is not a strong conclusion however, because the estimate of λ is very imprecise.  Nonetheless

in what follows we will work exclusively with the log-log version of the demand curve.
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Step 6:  Deal with autocorrelation.

The classical regression model, given by

yt = β´xt + εt (1)

assumes that the disturbance term (εt) is normally distributed with mean 0 and variance σ2.  With

first-order autocorrelation (which is the commonest type) we have

εt = ρ.εt-1 + ut (2)

where ρ is the (first-order) autocorrelation coefficient and it is assumed that ut is normally

distributed with zero mean and constant variance.  The Durbin-Watson statistic tests for the

presence of first-order autocorrelation;  when it is close to 2 there is no autocorrelation, but if the

number approaches 0 or 4 then there is evidence of autocorrelation.

The problem is that if we estimate equation (1) when there is autocorrelation present, the

estimates of the coefficients will be biased.  The solution is to estimate ρ and to transform the

variables to give

yt - ρ.yt-1 = β´(xt - ρxt-1) + ut (3)

and then to apply ordinary least squares to this equation.  One first needs an estimate of ρ, and

there are a number of techniques for getting this;  the estimates differ slightly, depending on the

technique used.  Here are the results of applying a maximum likelihood approach to estimating ρ:

===============================================================================¼
º  LIMDEP Estimation Results                       Run log line   26  Page  10 º
º  Current sample contains      19 observations.                               º
===============================================================================¼

===============================================
º AR(1) Model:     e(t) = rho * e(t-1) + u(t) º
º Initial value of rho       =        0.53640 º
º Maximum iterations         =             20 º
º Iter=  8, SS=      0.137, Log-L=  18.989842 º
º Final value of Rho    =             0.91463 º
º Durbin-Watson:   e(t) =             0.17864 º
º Std. Deviation:  e(t) =             0.23645 º
º Std. Deviation:  u(t) =             0.09559 º
º Durbin-Watson:   u(t) =             2.14519 º
º Autocorrelation: u(t) =            -0.07259 º
º N[0,1] used for significance levels         º
==============================================¼

  Variable  Coefficient   Standard Error  z=b/s.e. P[|T|>=t]   Mean of X
  _____________________________________________________________________
  Constant    4.1724          3.4052        1.225   0.22047    n.a.
  LRPREG1   -0.45080         0.31944       -1.411   0.15819   1.967
  LRPDIE1    0.18787         0.29252        0.642   0.52071   1.362
  LRGDPCAP   0.76181         0.44956        1.695   0.09016   7.207
  Rho        0.91463         0.95291E-01    9.598   0.00000    n.a.

The estimated value of ρ is high (i.e. close to 1) and highly significant.  There is no remaining

autocorrelation.  The estimated coefficients are all reduced (in absolute terms), when compared to
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the results of the estimation which did not correct for autocorrelation.  This is a viable and

plausible model.

Step 7:  Exploring dynamics

Most of the equations estimated so far are static, in the sense that they assume that

consumers fully adjust their quantity demanded in year t in response to the income and price levels

observed in year t.  For goods such as gasoline it is more plausible that consumers adjust with a

lag.  For instance, a higher price of gasoline may eventually lead consumers to replace large cars

with small ones, but this takes time.  The partial adjustment model begins with

yt = yt-1 + k(y*
t - yt-1)

where y*
t  is the desired level of yt and k is the proportion of the adjustment from the previous years

level to this year’s desired level that takes place in year t.  The adjustment parameter k is expected

to be between 0 (slow adjustment) and 1 (rapid adjustment).  If one then assumes that

y*
t = β‘xt + εt (4)

and rearranges, this yields the equation which has to be estimated:

yt = k.β‘xt + (1-k)yt-1 + k.εt (5)

This is very like the classical regression equation given in (1), except that there is a lagged

dependent variable on the right hand side.  The results of estimating equation (5) are as follows:
================================================================================
º  LIMDEP Estimation Results                       Run log line   28  Page  11 º
º  Sample was reset:  REJECT   YEAR=1978$                                      º
º  Current sample contains      18 observations.                               º
===============================================================================¼

=========================================================================
º Ordinary    least squares regression    Weighting variable = ONE      º
º Dependent variable is LQREGCAP  Mean =    8.93605, S.D. =      0.2015 º
º Model size: Observations =      18, Parameters =   5, Deg.Fr. =    13 º
º Residuals:  Sum of squares=   0.763599E-01 Std.Dev. =         0.07664 º
º Fit:        R-squared = 0.88938, Adjusted R-squared =         0.85534 º
º Model test: F[  4,     13] =   26.13,    Prob value =         0.00000 º
º Diagnostic: Log-L =     23.6231, Restricted(á=0) Log-L =       3.8082 º
º             Amemiya Pr. Crt.=    0.008, Akaike Info. Crt.=     -2.069 º
º Autocorrel: Durbin-Watson Statistic =   2.36533,   Rho =     -0.18266 º
========================================================================¼
  Variable  Coefficient   Standard Error  t-ratio  P[|T|>=t]   Mean of X
  _____________________________________________________________________
  Constant  -0.65452E-01      1.7097       -0.038   0.97004    n.a.
  LRPREG1   -0.26220         0.13378       -1.960   0.07179   1.975
  LRPDIE1    0.78846E-01     0.23324        0.338   0.74073   1.367
  LRGDPCAP   0.41417         0.33218        1.247   0.23447   7.196
  LQRE[-1]   0.71717         0.14038        5.109   0.00020   8.968

This equation fits well (adjusted R2 = 0.86) and the coefficients are reasonable.  Durbin’s h

statistic should be used instead of the Durbin-Watson test here, because of the presence of the

lagged dependent variable, but autocorrelation does not appear to be a problem here.  The

estimated value of k is 0.28 (= 1-0.72), which implies that 28% of the adjustment to prices and

income takes place in a given year.  This is a slow reaction, but not implausible.  The coefficients
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on the independent variables may be thought of as short-run elasticities;  when divided by the

estimate of k they yield long-run elasticities.  This gives the following:

Elasticity of demand for regular gasoline per capita
short-run long-run

with respect to the price of regular gasoline
with respect to the price of diesel fuel
with respect to GDP per capita

-0.26
0.08
0.41

-0.93
0.28
1.46

These are certainly reasonable numbers, but note that the estimated coefficients on two of the

variables - the price of diesel fuel, and GDP per capita, and not statistically significant.

Step 8:  An Error-Correction Model

Until recently, most analysis stopped at Step 7 (e.g. Gately, Greene, etc.).  The analyst,

using his or her best judgment, would choose a “best” model, and typically base the rest of their

discussion on the results of the favored model.  Much of the art of applied economics is in

determining which model is the most accurate and appropriate representation of reality.

Some authors do a lot of experimentation, but this is not desirable, particularly with a very

small time series such as the one considered here.  It is simply asking too much of a short series of

numbers to pick from a multitude of possible specifications and to come up with reliable estimates.

Experimentation tends to lead to over-fitting, and hence to reported results that are not in fact as

precise as they seem.

When there are enough observations, in a time series, it is possible to apply even more

elaborate statistical techniques, and to build an error-correction model.  We illustrate this

procedure with the same data set, despite the fact that there are not really enough observations in

this case for the procedure to be useful enough to generate believable and useful results.

The first question to ask is whether the different time series are stationary.  A stationary

series is one that does not show any clear trend over time.  The problem here is that when series are

not stationary they may seem to be closely related - because they are drifting in the same direction

over time - even though there may not in fact be any relationship between them.  One might then

observe a spurious correlation, and thus draw the wrong inferences from the data.  For example, in
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Europe the number of people going to church on Sundays has been falling, while GDP has been

rising.  A regression of GDP against church-going would show a statistically significant negative

relationship.  But there may be no real causality involved.  The commonest solution is to purge the

series of the time trend, usually by taking differences;  thus instead of regressing yt on xt one

eventually regresses yt-yt-1  on xt-xt-1.  Of course this step is not necessary if the series are in fact

stationary, so one needs to check this first.

To test for stationarity, estimate the equation

∆Xt = φ0 + φ1t + φ2Xt-1 + εt. (6)

for all the variables (dependent and independent);  here ∆Xt = Xt - Xt-1.  If the estimated value of φ2

is significantly negative, then one rejects the null hypothesis of a “unit root” - i.e. it is reasonable to

suppose that the series Xt is stationary.  Then one need go no further, and the results found in the

preceding steps will apply.

But if the “t-statistic” on φ2 is low, then one cannot reject the unit root hypothesis that the

series is in fact non-stationary.  The “t-statistic” in this case, calculated by dividing the estimated

coefficient by its estimated standard error, has to be compared with the significance tables

compiled by Dickey and Fuller.  In some cases researchers also include ∆Xt-2 on the right-hand

side, in which case the augmented Dickey-Fuller test is applied.

Suppose that a subset of n variables are non-stationary.  Then the steps are:

• Apply OLS to the these variables in their levels - i.e. estimate a regression along the lines

shown in equation (1).  If this equation is statistically significant, and if the residuals are

themselves stationary, then one has the co-integrating vector, which gives the long-run

relationship between the variables.  The elasticities from this equation may be treated as long-

run elasticities.  Call the estimated residuals from this equation et..

• Now estimate the relationship in its differenced form, and include the lagged residuals et-1  in

this equation.  Such an estimating equation might look like the following:

∆ln(Yt) = a + b.∆ln(Xt) + c.∆ln(Yt-1) + d.et-1

(Note that the lagged value of the dependent variable could be omitted.)  This equation may be

interpreted as yielding short-run elasticities.  It should also include on the right hand side any

stationary variables (differenced);  after all these may have a short-run effect on the dependent
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variable, even though they cannot have a permanent effect on Y.  The estimate of the coefficient d

indicates how quickly the dependent variable adjusts towards its long-run level.  For instance

Bentzen and Engsted, in a study of energy consumption in Denmark, estimated d to be a

statistically significant -0.238;  they interpret this as indicating that “in the case we are off the

long-run demand curve, energy consumption adjusts towards its long-run level with about one

quarter of the adjustment taking place within the first year” (p.13).

We may apply the error-correction approach to the Madagascar gasoline data.  First we

test for stationarity, estimating equation (6) for all of the variables.  Here are the essential results:

=========================================================================
º Ordinary    least squares regression    Weighting variable = ONE      º
º Dependent variable is DLQREGCA  Mean =   -0.03159, S.D. =      0.1002 º
º Model size: Observations =      18, Parameters =   3, Deg.Fr. =    15 º
º Residuals:  Sum of squares=   0.109323     Std.Dev. =         0.08537 º
º Fit:        R-squared = 0.35951, Adjusted R-squared =         0.27411 º
º Autocorrel: Durbin-Watson Statistic =   2.35456,   Rho =     -0.17728 º
========================================================================¼
  Variable  Coefficient   Standard Error  t-ratio  P[|T|>=t]   Mean of X
  _____________________________________________________________________
  Constant   -6.1220          15.085       -0.406   0.69060    n.a.
  YEAR       0.38411E-02     0.70035E-02    0.548   0.59145   1988.
  LQRE[-1]  -0.17216         0.15354       -1.121   0.27980   8.968

=========================================================================
º Ordinary    least squares regression    Weighting variable = ONE      º
º Dependent variable is DLRPREG1  Mean =   -0.00853, S.D. =      0.1015 º
º Model size: Observations =      18, Parameters =   3, Deg.Fr. =    15 º
º Residuals:  Sum of squares=   0.905366E-01 Std.Dev. =         0.07769 º
º Fit:        R-squared = 0.48337, Adjusted R-squared =         0.41449 º
º Autocorrel: Durbin-Watson Statistic =   1.95380,   Rho =      0.02310 º
========================================================================¼
  Variable  Coefficient   Standard Error  t-ratio  P[|T|>=t]   Mean of X
  _____________________________________________________________________
  Constant    30.459          8.4310        3.613   0.00256    n.a.
  YEAR      -0.14905E-01     0.41605E-02   -3.582   0.00272   1988.
  LRPR[-1]  -0.42556         0.15058       -2.826   0.01277   1.984

=========================================================================
º Ordinary    least squares regression    Weighting variable = ONE      º
º Dependent variable is DLRPDIE1  Mean =    0.01155, S.D. =      0.1103 º
º Model size: Observations =      18, Parameters =   3, Deg.Fr. =    15 º
º Residuals:  Sum of squares=   0.123399     Std.Dev. =         0.09070 º
º Fit:        R-squared = 0.40308, Adjusted R-squared =         0.32349 º
º Autocorrel: Durbin-Watson Statistic =   1.87743,   Rho =      0.06128 º
========================================================================¼
  Variable  Coefficient   Standard Error  t-ratio  P[|T|>=t]   Mean of X
  _____________________________________________________________________
  Constant  -0.80620          8.1901       -0.098   0.92289    n.a.
  YEAR       0.96927E-03     0.41261E-02    0.235   0.81745   1988.
  LRPD[-1]  -0.81779         0.25702       -3.182   0.00619   1.356

=========================================================================
º Ordinary    least squares regression    Weighting variable = ONE      º
º Dependent variable is DLRGDPCA  Mean =   -0.01714, S.D. =      0.0499 º
º Model size: Observations =      18, Parameters =   3, Deg.Fr. =    15 º
º Residuals:  Sum of squares=   0.329999E-01 Std.Dev. =         0.04690 º
º Fit:        R-squared = 0.21908, Adjusted R-squared =         0.11495 º
º Autocorrel: Durbin-Watson Statistic =   1.43401,   Rho =      0.28299 º
========================================================================¼
  Variable  Coefficient   Standard Error  t-ratio  P[|T|>=t]   Mean of X
  _____________________________________________________________________
  Constant    6.8389          7.3372        0.932   0.36605    n.a.
  YEAR      -0.23446E-02     0.32143E-02   -0.729   0.47698   1988.
  LRGD[-1]  -0.30447         0.16756       -1.817   0.08923   7.213

In every case coefficient on the lagged dependent variable is negative, which is to be expected.

And in every case it is not statistically significant, because the critical t-value for the Dickey-Fuller
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test is about 3.5.  Thus we cannot reject the unit root hypothesis that all the variables are non-

stationary - i.e. they are drifting over time.

Thus we applied OLS to the whole model;  the results are given above in step 5a.  We used

the residuals from this equation to estimate the following error-correction model:

================================================================================
º  LIMDEP Estimation Results                       Run log line   49  Page  22 º
º  Current sample contains      18 observations.                               º
===============================================================================¼

=========================================================================
º Ordinary    least squares regression    Weighting variable = ONE      º
º Dependent variable is DLQREGCA  Mean =   -0.03159, S.D. =      0.1002 º
º Model size: Observations =      18, Parameters =   5, Deg.Fr. =    13 º
º Residuals:  Sum of squares=   0.782831E-01 Std.Dev. =         0.07760 º
º Fit:        R-squared = 0.54136, Adjusted R-squared =         0.40024 º
º Model test: F[  4,     13] =    3.84,    Prob value =         0.02848 º
º Diagnostic: Log-L =     23.3993, Restricted(á=0) Log-L =      16.3838 º
º             Amemiya Pr. Crt.=    0.008, Akaike Info. Crt.=     -2.044 º
º Autocorrel: Durbin-Watson Statistic =   1.73287,   Rho =      0.13357 º
========================================================================¼
  Variable  Coefficient   Standard Error  t-ratio  P[|T|>=t]   Mean of X
  _____________________________________________________________________
  Constant  -0.33262E-01     0.20794E-01   -1.600   0.13369    n.a.

  DLRPREG1  -0.52943         0.29732       -1.781   0.09833 -0.8528E-02
  DLRPDIE1   0.26088         0.25240        1.034   0.32018  0.1155E-01
  DLRGDPCA   0.47736         0.42336        1.128   0.27990 -0.1714E-01
  ELQR[-1]  -0.38071         0.16041       -2.373   0.03373 -0.6099E-02

This indicates that if demand has been pushed off its equilibrium level, about 38% of the

disequilibrium will be corrected for in any given years.  The short-run elasticities are reasonable,

although perhaps a bit too high for the own-price elasticity of demand.  It is a pity that this

regression is barely statistically significant; only the error-correction term can really be said to

have a significant influence.

In Sum

The estimated elasticities from the above estimations are summarized in Table 1.  Unfortunately

they differ substantially, depending on the method used.  The straightforward linear and log-log

models are not satisfactory, because there is autocorrelation present.  The error correction model

may be stretching the limited data too far.  The partial adjustment model yields plausible results,

and gives both short-run (one year) and long-run elasticities;  these are the ones I consider to be

most satisfactory in this case.  The AR1 estimates lie between the lower and upper bounds of the

partial adjustment estimates, and might perhaps be thought of as some sort of average of the short-

run and long-run elasticities.

Table 1
Estimated elasticities of demand for the quantity of regular gasoline in Madagascar

Estimated elasticity of demand for regular gasoline,
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with respect to:
Model the real price of

regular gasoline
the real price of

diesel fuel
real GDP/capita

short-
run

long-
run

short-
run

long-
run

short-
run

long-
run

Linear model, no time trend, at mean -0.07 0.48 2.18*
Linear model, time trend, at mean -1.07* 1.12* 0.51
Log-log model, no time trend -0.10 0.43 2.02*
Log-log model, time trend -0.98* 093* 0.32
AR1 model -0.45 0.19 0.76*
Partial adjustment model -0.26* -0.93* 0.08 0.28 0.41 1.46
Error correction model -0.53 -0.10 0.26 0.43 0.48 2.02
Memo items:
  Means of independent variables
  Coefficients, linear model, no trend
  Coefficients, linear model, trend

7.238
-81.91

-1193.4*

3.918
81.71

2100.5*

1356.4
12.94
3.006

Notes:  * denotes statistically significant at 10% level or better.  Mean of dependent variable is 8065.4.

Some further considerations

This example has focused on the determinants of demand for regular gasoline.  But about

5% of the gasoline sold in Madagascar is premium gasoline, and is presumably a close substitute

for regular gasoline.  One could add the real price of premium gasoline to the regression, although

this would use up one valuable degree of freedom.  Alternatively one could estimate the demand for

all gasoline, adding together the amounts of regular and premium gasoline sold.  In this case one

would have to construct a gasoline price index - a weighted average of the price of regular and of

premium gasoline.

An exercise similar to this one would be worth applying to the demand for diesel fuel,

which is two and a half times larger (now) than the demand for gasoline.

The emphasis in this note is on the practice of applied econometrics.  One could push the

analysis further.  For instance one could check for the presence of heteroskedasticity, although this

is not usually a serious problem in time-series analysis of this nature.  Or one could try other forms

of lag structure, or other variables.  And one might want to add dummy variables for those years in

which there was an exceptionally disruptive event (e.g. a coup, an oil price shock, etc.).  But with

the exception of such dummy variables, it is rare that such refinements add much to the simpler,

and generally more robust, analysis outlined here.
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For the estimation of demand curves for tobacco products, and for alcoholic beverages, the

lag structure may be less important than in the case of petroleum products.  Presumably people

adjust fairly quickly to changes in the price of alcohol or tobacco;  this is not guaranteed however,

because alcohol and (especially) tobacco have addictive properties and people may have to struggle

to give up their consumption, even when it becomes too expensive.

Perhaps the biggest challenge in modeling the demand for excisable tobacco and alcohol

products is in finding a viable price series for informal substitutes.  Yet the prices of locally-made

tobacco, and of artisanal alcohol, are likely to influence strongly the demand for these products in

the formal sector.

3. Elasticities in comparative perspective

Petroleum Products

A sampling of estimates for the elasticity of demand for gasoline (in total, or per capita, or

per vehicle, or the demand for miles driven) is given in Table 2.  An enormous number of studies of

gasoline (or fuel or energy) demand have been undertaken for the developed countries (see Dahl,

and also Dahl and Sterner, for summaries), but very few for less-developed countries.  There is a

gap here which needs to be filled.  The key findings for developed countries are

• the own-price elasticity of demand is (absolutely) very low, both in the short-run and even in

the long-run.  The implication here is that the revenue-maximizing tax on motor fuel is likely to

be high (see methodological note No. 3).

• the income elasticity of demand is less than one, and so taxes on motor fuel are not likely to be

very income elastic (i.e. will not rise as quickly as GDP;  see methodological note No. 1).

However I would expect the income elasticity to be greater than one in most less-developed

countries;  as income rises in LDCs, many people acquire motorbikes and cars and so within a

certain income range the consumption of motor fuel almost certainly rises more quickly than

income.

Table 2
Demand elasticities for petroleum products

Own-price elasticity of
demand

Income or GDP elasticity
of demand
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short-run long-run short-run long-run
Madagascar, annual data, 1978-1996, partial adjustment (from Table 1)
  Dependent variable:  gasoline per capita -0.26 -0.93 0.41 1.46
11 Asian countries, annual data 1973-87, pooled. (McRae)
  Dependent variable:  gasoline per vehicle -0.13 -0.26 0.6 0.66
  Dependent variable:  vehicles per person -0.7 -0.31
OECD countries, ... (Baltagi and Griffin)
  Dependent variable:  gasoline/vehicle -0.55 0.54
  Dependent variable:  vehicles/person -0.66
US, annual data, 1966-1989, partial adjustment. (Greene)
  Dependent variable:  vehicle miles traveled* -0.12 -0.33 -0.07 -0.20
US, annual data, 1966-88, log-log model. (Gately)
  Dependent variable:  Vehicle miles travelled* -0.09 0.52
US, state data, 1970-1991, partial adjustment. (Haughton & Sarkar)
  Dependent variable:  gasoline -0.14 -0.30
Various industrial countries, since about 1970. (Dahl and Sterner)
  Dependent variable:  gasoline per capita ≈-0.27 ≈-0.84 ≈0.44 ≈1.33
Denmark, annual data, 1948-1991, error correction model  (Bentzen)
  Dependent variable:  gasoline per capita -0.32 -0.41 0.89 1.04
Notes:  *  From regression which includes number of drivers on right hand side.

Cigarettes and tobacco

A sampling of demand elasticities for cigarettes and tobacco is shown in Table 3.  The

evidence from the US indicates that in the short-run (i.e. about one year) the demand for cigarettes

is quite inelastic - i.e. even if the price were rise 10%, the quantity demanded would fall by

substantially less than 10%, in fact by somewhere between 2% and 4%.  On the other hand the

long-run elasticities are more substantial.  The “addiction models” of cigarette demand are based

on the idea that consumption now depends on how much one consumed in the past and how much

one will consume in the future;  the addictive qualities of cigarettes make it harder for smokers to

react quickly to a change in the price of cigarettes.  In these cases the demand equations are

estimated with lagged dependent variables on the right hand side (the “myopic addiction” model) or

with both lagged and lead dependent variables on the right hand side (the “rational addiction”

model).  There is a good discussion in Keeler et al.

Almost no studies of this nature have been reported for less-developed countries.  One

exception is Chapman and Richardson’s results for Papua New Guinea.  They did not have

information about the retail price of cigarettes or tobacco, so they measured the response of

demand to a change in the (real) excise taxes on tobacco and on cigarettes.  Their excise elasticities

are quite high (in absolute terms), and understate the price elasticities.

Table 3
Demand elasticities for cigarettes and tobacco

Own-price elasticity of
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demand
short-run long-run

USA
  Cigarettes.  Becker, Grossman & Murphy, 1994.  State data over time. -0.36 -0.79
  Cigarettes.  Chaloupka, 1991.  Individual data. -0.20 -0.45
  Cigarettes.  Keeler et al, 19xx.  California monthly data, 1980-90.

myopic addiction (i.e. with lagged variables)
rational addiction (i.e. with lead and lagged variables)

-0.34
-0.36

-0.47
-0.58

no addictive behavior:  with time trend
no addictive behavior:  without time trend

-0.20
-0.46

w.r.t. price of
cigarettes

w.r.t. price of
tobacco

Papua New Guinea.
  Chapman and Richardson.  Annual data, 1973-86
  Cigarettes.  Excise elasticities.* -0.71 0.50
  Tobacco  Excise elasticities.* 0.62 -0.50
Note:  *  Excise elasticities give % change in quantity demanded ÷ % change in excise tax rate.  These understate the
price elasticities of demand.
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Appendix 1
Data for Madagascar Petroleum Product Demand Estimations

Vol, MT Val, pre T, '000 FMG TUPP paid, '000 FMG TUPP/liter
Regular Diesel Regular Diesel Regular Diesel Regular Diesel GDP

qreg qdie vreg vdie treg tdie gdp

1978 111,813  159,146  10,076,699       8,222,596        2,560,518          87,643              22.90      8.50        602.4      
1979 93,973    183,492  8,468,095         9,468,132        2,236,557          121,287            23.35      6.67        736.8      
1980 107,997  184,878  17,141,575       15,623,300      2,994,757          61,291              24.27      7.24        854.0      
1981 92,547    169,865  24,926,239       21,528,860      6,145,121          335,939            55.88      21.23      976.8      
1982 77,671    149,055  25,043,849       22,027,199      4,388,412          310,343            56.20      21.65      1,233.2   
1983 76,454    147,354  24,651,445       21,775,827      4,319,651          332,896            32.06      18.39      1,511.5   
1984 70,867    146,541  22,758,985       22,784,373      3,270,720          3,204,948         46.15      21.87      1,695.0   
1985 72,672    150,617  25,962,544       26,071,863      1,795,489          1,941,754         24.71      12.89      1,893.2   
1986 75,260    167,900  26,170,620       28,052,604      2,414,353          3,008,060         32.08      17.92      2,203.8   
1987 73,396    165,902  33,262,627       36,274,638      2,833,526          3,890,236         38.61      23.45      2,743.2   
1988 69,107    163,649  43,294,153       50,939,024      3,145,751          4,210,689         45.52      25.73      3,436.8   
1989 72,488    178,934  48,781,202       60,950,338      3,555,134          4,420,217         49.04      24.70      4,005.3   
1990 75,788    193,188  52,445,296       67,680,196      2,273,640          2,897,820         30.00      15.00      4,603.9   
1991 67,448    194,599  51,339,169       80,742,368      4,384,120          6,324,468         65.00      32.50      4,913.6   
1992 74,002    217,107  42,433,865       99,742,543      19,487,141        7,689,204         263.33    35.42      5,593.1   
1993 82,658    219,442  36,720,817       102,168,475    32,925,437        22,584,225       398.33    102.92    6,450.9   
1994 87,338    250,550  46,485,396       126,760,521    48,225,569        39,733,850       536.67    156.67    9,131.2   
1995 95,893    260,822  90,642,072       197,744,385    56,949,125        37,987,703       595.00    192.08    13,639.9 
1996 103,503  257,906  110,336,800      220,877,142    71,783,760        70,043,100       690.00    345.00    16,403.7 

Pump P FMG/l Real prices/l Qty per cap Pre-tax real prices
CPI Pop Regular Diesel Regular Diesel Regular Diesel Regular Diesel
cpi pop preg1 pdie1 rpreg1 rpdie1 qregcap qdiecap ptrpreg1 ptrpdie1

1978 14.6 8.2 90.4 51.8 6.19 3.54 13,570    19,314    4.62 2.96
1979 16.7 8.5 116.3 63.2 6.96 3.79 11,095    21,664    5.56 3.39
1980 19.7 8.8 153.3 81.4 7.78 4.13 12,300    21,057    6.55 3.76
1981 25.7 9.0 248.0 118.8 9.65 4.62 10,329    18,958    7.48 3.80
1982 33.9 9.3 303.3 140.2 8.95 4.13 8,316      15,959    7.29 3.50
1983 40.5 9.4 323.0 148.0 7.98 3.65 8,133      15,676    7.18 3.20
1984 44.4 9.71 360.9 172.2 8.13 3.88 7,298      15,092    7.09 3.39
1985 49.1 9.98 382.0 186.0 7.78 3.79 7,282      15,092    7.28 3.53
1986 56.3 10.1 382.0 186.0 6.79 3.30 7,451      16,624    6.22 2.99
1987 64.7 10.37 475.3 233.7 7.35 3.61 7,078      15,998    6.75 3.25
1988 82.1 10.63 673.8 337.9 8.21 4.12 6,501      15,395    7.65 3.80
1989 89.5 10.91 672.0 337.0 7.51 3.77 6,644      16,401    6.96 3.49
1990 100.0 11.2 719.3 363.8 7.19 3.64 6,767      17,249    6.89 3.49
1991 108.5 11.49 826.1 446.9 7.61 4.12 5,870      16,936    7.01 3.82
1992 124.4 12.08 838.0 494.7 6.74 3.98 6,126      17,972    4.62 3.69
1993 136.8 12.42 844.1 570.2 6.17 4.17 6,655      17,668    3.26 3.42
1994 190.1 12.77 1078.5 662.4 5.67 3.48 6,839      19,620    2.85 2.66
1995 276.0 13.13 1536.0 1199.8 5.57 4.35 7,303      19,865    3.41 3.65
1996 331.1 13.47 1757.4 1444.8 5.31 4.36 7,684      19,147    3.22 3.32

rpreg1 rpdie1 qregcap qdiecap ptrpreg1 ptrpdie1
Means 7.24 3.92 8,065      17,668    5.89 3.43


